

Video delivery over the FTTH network

David Piehler

Vice President FTTP Business Unit Harmonic, Inc. Sunnyvale, California

david.piehler@harmonicinc.com

Broadband Access Industry Watch, ICBN-04, 9 April 2004, Kobe, Japan

Video is the high bandwidth FTTH application

Application

bandwidth (Mb/s)

54.3

2 x HDTV	2 x 20 Mb/s	40.0
2 x standard digital video TV	2 x 2 Mb/s	4.0
CD quality sound	200 kb/s	0.2
telephony	<100 kb/s	0.1
web surfing	10 Mb/s (max)	10.0

total bandwidth

2 "Video delivery over the FTTH network," Broadband Access Industry Watch, ICBN-04, 9 April 2004, Kobe, Japan

Video delivery can be in-band or out-ofband

Out-of-band – Video over RF

- Dedicates a wavelength to downstream overlay video services using radio frequency (RF) technology
- Closely resembles traditional cable delivery method
- Fundamentally a one-way system
- Targeted services (VoD) implemented via *narrowcasting*
- The RBOCs have chosen this approach for FTTP
- In-band Video over IP
 - Packetized video content
 - Bandwidth intensive; easily breaks as it scales
 - Regarded as more highly interactive
 - A converged network

3

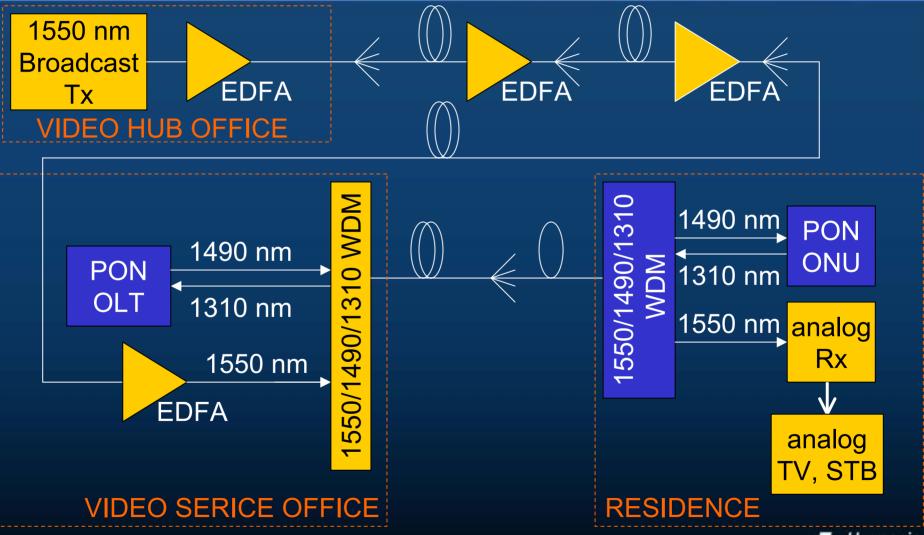
Hybrid RF-IP is also possible

"Video delivery over the FTTH network," Broadband Access Industry Watch, ICBN-04, 9 April 2004, Kobe, Japan

$\frac{\text{Applications}_{(\text{Present + Future})} + \text{Technology}_{(\text{Present})}}{\Rightarrow \text{delivery method}}$

Present and future applications

- HDTV is a present and competitive offering in US
- >1 HDTV per home may become reality
- Present technology
 - B-PON


$$\frac{622 \text{ Mb/s}}{32 \text{ users}} \times \frac{1 \text{ user}}{3 \text{ TV}} \sim 6.5 \text{ Mb/s / TV}$$

No mass market IP TV or IP set top boxes

The emergence of HDTV, as well as RF-based digital products and standards makes the RF overlay a practical choice.

EPON and ATM-PON specifications accommodate the RF video overlay

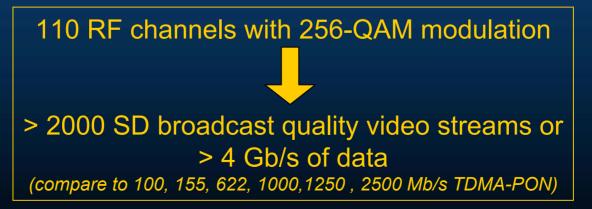
"Video delivery over the FTTH network," Broadband Access Industry Watch, ICBN-04, 9 April 2004, Kobe, Japan

5

The RF video overlay is highly developed and low risk

In the home

- The "analog" TV is the most common residential gateway in the world.
- Analog video serves multiple TVs without extra set top boxes
- Digital set top box volume driven by CATV applications digital video and video on demand
- Most homes are already "wired" with coax.
- At the Headend / Central Office
 - Broadcast video scales with demand better than IP video
 - Headend infrastructure equipment for video overlay is proven and mature
 - for analog video
 - digital broadcast video
 - for video on demand
 - for HDTV



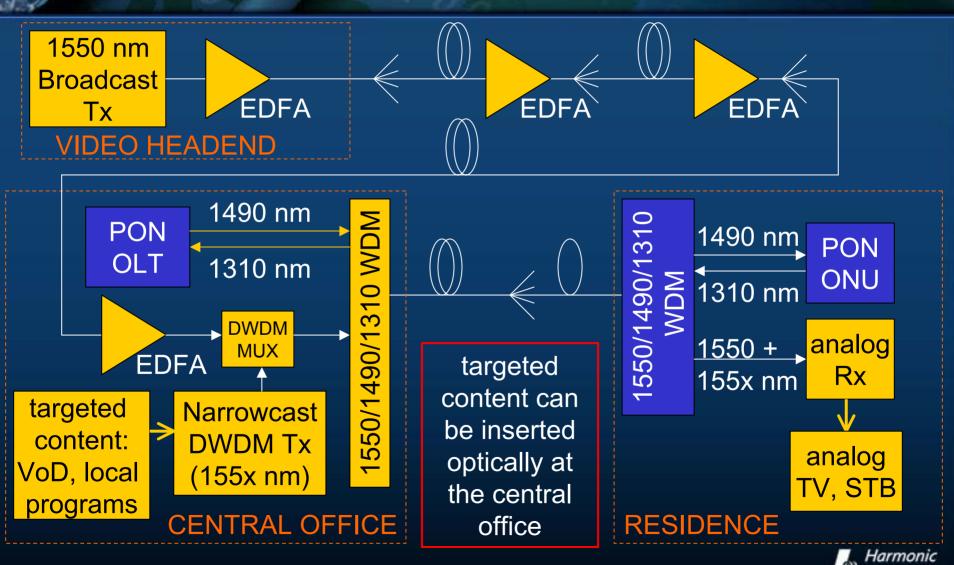
The RF video overlay is bandwidth efficient

modulation format	data rate in 6 MHz RF channel
	Mb/s
256-QAM	38
64-QAM	28
QPSK	10
QPSK	10

MPEG encoding + statistical multiplexing + 256-QAM modulation

up to 18 broadcast quality video streams within a 6-MHz bandwidth

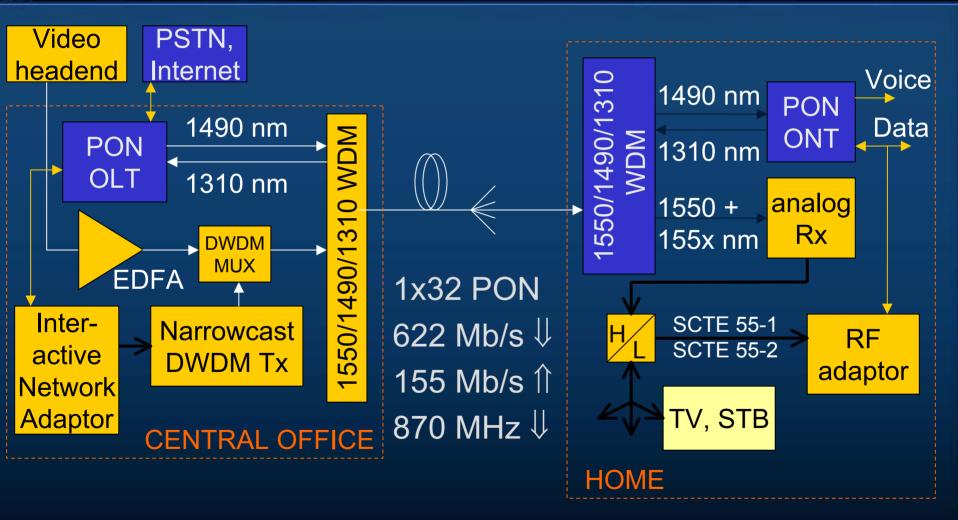
"Video delivery over the FTTH network," Broadband Access Industry Watch, ICBN-04, 9 April 2004, Kobe, Japan


7

RF video overlay enables both broadcast and targeted content

- Not all video content is broadcast
- Video on Demand content is unique to the subscriber
- Optical Narrowcasting uses DWDM to assign bandwidth segments to targeted service groups of multiple 32-user PONs
 - Broadcast and Narrowcast content are optically MUXed using DWDM
 - Content is deMUXed at the ONT via RF Sub-Carrier Multiplexing (SCM)
 - Both wavelengths shine on the same photodiode. No DWDM deMUX required at the ONT

RF video overlay uses DWDM for narrowcasting


"Video delivery over the FTTH network," Broadband Access Industry Watch, ICBN-04, 9 April 2004, Kobe, Japan

The Return Path is the RF video overlay's weakness

- The RF video overlay does not naturally accommodate the cable return path
 - Limits use commodity two-way cable set-topboxes
- Solution: *The RF adaptor*
 - Co-located at the ONT
 - Enables interactive video services over RF overlay architecture
 - Demodulates upstream RF (5-42 MHz) QPSK set top box communications and translates into IP packets

Fiber to the Premises

Summary

- Present HDTV bandwidth requirements are ~10 times greater than SDTV
 - Video over switched infrastructures (xDSL, ATM-PON, IP) is challenging
- RF video is very bandwidth efficient.
- RF video accommodates a flexible mix of broadcast and narrowcast content
- The RF adaptor allows use of standard two-way set top boxes
- RF video leverages mature technology
- RF video is the selection of record for the US RBOCs FTTP plans

